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I. INTRODUCTION
Reinforcement learning (RL) has been a significant part of

AI research for the past four decades. In a nutshell, RL is a
type of machine learning (ML) where an AI agent learns to
solve decision-making problems in environments through trial
and error. Such an agent learns which decisions are the best to
make in any given situation to maximize some notion of
cumulative reward (Sutton & Barto, 2018).
Research in reinforcement learning has experienced

explosive growth in the past two decades with the emergence
of deep reinforcement learning in which RL is integrated with
deep neural networks to handle more complex data and tasks.
Deep RL has been the central technology behind many of the
incredible AI breakthroughs in the later 2010s such as Google
DeepMind’s DQN algorithm which learned how to play Atari
in 2015 from just looking at raw pixels (Mnih et al., 2015).
Another notable example is the invention of AlphaGo in 2016,
which defeated the Go game world champion Lee Sedol
(Silver et al., 2016). Later, DeepMind researchers invented
MuZero, an advanced RL model that can theoretically solve
any game or task without requiring any prior knowledge of
them as long as it can repeatedly interact with the environment
and observe the outcomes of its actions (Schrittwieser et al.,
2019). This was a significant achievement as it represents a
step toward adaptable, rule-free learning in games and beyond.
Today, RL is considered one of the “big three” branches of
ML, alongside supervised and unsupervised learning and
continues to be an area of intense research and development.

II. HOW DOES REINFORCEMENT LEARNING WORK?
At the heart of RL is the idea of an agent interacting with an

environment. Unlike supervised learning, where the model
learns from a dataset of labeled examples, an RL agent learns
by directly interacting with the environment in which it is in.
Once this learning process is over, an RL agent has a better
idea of which action to take at any given situation or state. For
example, if we wanted to make an AI agent that autonomously
plays a video game, the agent might be the virtual, playable
character and the environment is the game world itself. In any
game, the player must take actions to achieve a goal or collect
reward. Through trial and error, the RL agent learns which are
the best actions to take and most effective. It essentially maps
situations to actions to maximize a reward signal.
To understand RL well, we must first lay the foundation by

exploring Markov Decision Processes (MDPs), a
mathematical framework for modeling decision-making
problems in uncertain situations. All reinforcement learning
algorithms are essentially solving some variation of an MDP.
Formally, an MDP is defined as a tuple where:< 𝑆, 𝐴, 𝑇, 𝑅 >

● is the finite set of all possible states in the𝑆
environment, also called the state space;

● is the finite set of all actions an agent can take;𝐴
● is a transition function, which𝑇: 𝑆 × 𝐴 × 𝑆 → [0, 1]

specifies the probability , i.e., the𝑇(𝑠, 𝑎, 𝑠')
probability that if the agent is in state and takes𝑠
action , it lands in state𝑎 𝑠'

● is a reward function that𝑅:  𝑆 × 𝐴 × 𝑆 → ℝ
specifies the reward that the agent will get𝑅(𝑠, 𝑎, 𝑠')
if it is in state , takes action , and lands in state𝑠 𝑎 𝑠'

The objective is the same as in RL: to find a mapping of
states to actions that maximizes the reward the agent𝑆 → 𝐴
can get. This mapping function is called the policy, often
denoted as the function which takes a state and returnsπ(𝑠) 𝑠
an action.
MDPs make some major assumptions about the problem

being solved. The word “markov” comes from the assumption
that the problem has the Markov property, the idea that the
future of an agent only depends on the state the agent is
currently in and zero consideration to its past history is
required to be given. MDPs also assume that the agent has full
observability meaning that it always perfectly knows exactly
what state it is in. These are quite strong assumptions to make,
as they do not hold in many real-world problems. Think of a
robot navigating an environment with sensors: these sensors
merely estimate the current state the robot is currently in, so
they do not grant the agent full observability. Oftentimes, it is
also necessary to keep track of an agent’s history to make
better decisions in the future. Still, with the many assumptions
that MDPs make, they are incredibly useful for many
problems and provide the basis for RL theory so it is vital to
understand them.

Figure 1: A simple MDP problem

Consider a gridworld as shown in Figure 1, in which an
agent starts in the square . The state space consists of(1, 1) 𝑆
all the squares the agent can be in except the square (2, 2)
which is a blocked cell and serves as a wall to all bordering
cells. The set of actions the agent can take are , , ,𝐴 = { ↑ → ↓

. Suppose the state transition function is as follows: any←} 𝑇
action taken brings the agent to the intended square (i.e., the
square in the direction of the action) with probability and0. 8
the squares to the left and right of the direction of the action
with probabilities each (see Figure 2). If the result of an0. 1



action hits a wall, the agent stays in place. Suppose the reward
function is such that landing in any non-terminal square gives
the agent a reward of and the terminal squares− 0. 04 (4, 3)
and give a reward of and respectively.(4, 2) + 1 − 1
Landing in a terminal square effectively ends the episode or
process.

Figure 2: The state-transition dynamics of the simple MDP

What is the best policy to solve this MDP? One idea for a
policy is shown in Figure 3.π

→ → → +1

↑ ↑ -1

↑ → ↑ ←

Figure 3: An idea for a policy to solve the MDPπ

At first glance, this policy seems like a good idea: it tries to
minimize the accumulated cost of living and get a large reward
by trying to get to the reward state as fast as possible.(4, 3)
However, if we consider the square , we will see that(3, 2)
there is a probability that the agent lands in the negative0. 1
terminal state . We can evade that square altogether if(4, 2)
choose action at state . How can we know which← (3, 2)
policy is best? Is there a way of evaluating a policy’s value?
This is where the idea of a value function comes in, a core

idea in reinforcement learning. A value function 𝑉: 𝑆 → ℝ
associates a numerical value with each state. The value of a
state is essentially the expected cumulative reward that the
agent can get at that state (i.e., the reward that the agent can
reasonably expect to get on average from that state onwards
provided that the agent follows the policy). The function

denotes the value of the the policy at a given state𝑉π(𝑠) π(𝑠)
. How do we compute this value function? We can use the𝑠
following equation to iteratively compute the value of every
state until convergence:

𝑉π(𝑠) =
𝑠' ϵ 𝑆
∑ 𝑇(𝑠, π(𝑠), 𝑠')[𝑅(𝑠, π(𝑠), 𝑠') + γ𝑉π(𝑠')]

This is the famous Bellman-backup equation for policy
evaluation, and is the core idea behind many MDP and RL
solving algorithms.
The symbol is called the discount factor, aγ

hyperparameter that is always set to a value between and0 1
and plays a crucial role in determining how future rewards are
valued compared to immediate rewards. The closer it is set to
, future rewards are not valued highly whereas if it is closer0

to future rewards impact the expected reward greatly.1
So how can we compute the best policy? A brute-force

approach would be to enumerate through all possible policies,
compute their value functions, and find the policy with the

best value. However, if we think about time complexity this
falls apart due to the fact that if there are actions and𝑎 𝑠
number of states in the state space, there are possible𝑎𝑠

policies. So this approach has exponential complexity in the
number of states. Fortunately, there exists a method to
compute the optimal policy by computing the optimal value of
each state directly. This method is called value iteration and
uses the Bellman equation:

𝑉(𝑠) =
𝑎

max
𝑠' ϵ 𝑆
∑ 𝑇(𝑠, 𝑎, 𝑠')[𝑅(𝑠, 𝑎, 𝑠') + γ𝑉(𝑠')]

Algorithm 1 Value Iteration.

Initialize forall𝑉*(𝑠) = 0 𝑠 ϵ 𝑆
while until converges:𝑉*

for :𝑠 ϵ 𝑆

Update 𝑉*(𝑠) =
𝑎

max
𝑠' ϵ 𝑆
∑ 𝑇(𝑠, 𝑎, 𝑠')[𝑅(𝑠, 𝑎, 𝑠') + γ𝑉*(𝑠')]

Update π(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑠' ϵ 𝑆
∑ 𝑇(𝑠, 𝑎, 𝑠')𝑉*(𝑠')

endfor
endwhile
return ,𝑉* π

When the value iteration algorithm finishes, it will have
computed , the optimal value or maximum expected𝑉*

cumulative reward of every state. Using this, the agent adopts
the greedy policy of selecting the action that leads the agent𝑎
to the most valuable states with the highest probability. In

other words, we select .𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑠' ϵ 𝑆
∑ 𝑇(𝑠, 𝑎, 𝑠')𝑉*(𝑠')

Some improvements can be made to the value iteration
algorithm. For instance, since we know how to evaluate a
fixed policy, we can first try coming up with a random policy
, evaluate it, then for each state update the policy to theπ

action that gives the highest . This𝑎
𝑠' ϵ 𝑆
∑ 𝑇(𝑠, 𝑎, 𝑠')𝑉π(𝑠')

strategy is known as the policy iteration algorithm.

Algorithm 2 Policy Iteration.

Choose a random policy π
while until does not change:π
Evaluate 𝑉π

for :𝑠 ϵ 𝑆

π'(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑠' ϵ 𝑆
∑ 𝑇(𝑠, 𝑎, 𝑠')𝑉π(𝑠')

endfor
Update π = π'

endwhile
return π



So when does reinforcement learning come into the mix?
The only difference between MDP problems and RL problems
lies in the fact that in RL, the transition function and the𝑇
reward function are not given to the agent. The agent must𝑅
come up with an optimal policy without this knowledge.π
Through its interactions with the environment, an RL agent
will learn the environment’s state-transition dynamics and
build an understanding of the transition function . Whenever𝑇
it experiences a reward, it will also update its understanding of
the reward function accordingly. Using this approximate𝑅
understanding of and , it will try to come up with an𝑇 𝑅
optimal policy.
RL generally comes in two flavors: passive and active. In

passive RL, we are mainly evaluating a fixed policy. The agent
has no control over the decision-making, and it just executes a
given policy and learns from the experience. The main
objective here is to learn the state values (and maybe construct
a learned model, e.g., a transition function ). In active RL,𝑇
the agent learns and adjusts its policy based on the
experienced rewards and it actively seeks out optimal actions.
The agent sometimes may even choose to randomly do a
different action than what its current policy suggests.
Choosing between the options of passive and active
algorithms is largely dependent on the problem being solved
and your goals as an RL agent architect.

III. MODEL-BASED RL
There are two major types of reinforcement learning:

model-based and model-free. What is a model? A model is
anything that the agent uses to predict the outcome of its
actions.
Model-based RL involves constructing or using a model of

the environment to plan actions before they’re taken. An
example is an aspiring pilot using a flight simulator to learn
how to safely operate an airplane. The pilot is essentially
learning a mental model of how a flight’s state-transition
dynamics work, and uses this knowledge to take the right
actions during actual flights. Model-based learning is
especially useful when dealing with problems whose
environments do not have the property of ergodicity. If an
environment is ergodic, it means that the agent can reach all of
the states in the environment if given enough time to explore
no matter where the agent starts. If an environment is
non-ergodic, some states in the environment may be difficult
to reach or completely inaccessible from certain other states.
An example of a problem with a non-ergodic environment is
the problem of self-driving. In this problem, the agent is the
autonomous, self-driving vehicle and the environment consists
of the roads and street intersections. If the vehicle crashes, it
will have effectively reached a state in which it cannot reach
any other state in the environment. In such problems, using a
model to plan actions is especially necessary because of the
massive stakes involved.
For the MDP problem shown in Figure 1, suppose we did

not know the transition function or reward , effectively𝑇 𝑅
making it an RL problem. Let’s say that our goal was to

construct a learned model of the environment, i.e., we are
trying to build the and functions. To be able to do this, we𝑇 𝑅
must move around the environment, try to explore the entire
state space, and observe the experienced transitions and
rewards. Using this experience, we can build an approximate
and . Let’s fix a policy to this problem so we can do just𝑇 𝑅

that (see Figure 4).

→ → → +1

↑ ↑ -1

↑ ← ← ←

Figure 4: A fixed policy to explore the environmentπ

Let’s say we start at the state . If we now act in the(1, 1)
environment using this policy, we might observe a series of
transitions like so:

Starting
state 𝑠

Action
𝑎 = π(𝑠)

Resulting
state 𝑠'

Experienced
𝑅(𝑠, 𝑎, 𝑠')

(1, 1) ↑ (1, 2) − 0. 04

(1, 2) ↑ (1, 2) − 0. 04

(1, 2) ↑ (1, 3) − 0. 04

(1, 3) → (2, 3) − 0. 04

(2, 3) → (3, 3) − 0. 04

(3, 3) → (3, 2) − 0. 04

(3, 2) ↑ (3, 3) − 0. 04

(3, 3) → (4, 3) + 1

Notice how the episode ended at the terminal state (4, 3)
with a reward of experienced by the agent. To get a more+ 1
accurate , we must conduct more episodes so that our𝑇
probability estimates more closely match the real .𝑇

Suppose another episode went like this:

Starting
state 𝑠

Action
𝑎 = π(𝑠)

Resulting
state 𝑠'

Experienced
𝑅(𝑠, 𝑎, 𝑠')

(1, 1) ↑ (1, 2) − 0. 04

(1, 2) ↑ (1, 3) − 0. 04

(1, 3) → (2, 3) − 0. 04

(2, 3) → (3, 3) − 0. 04

(3, 3) → (3, 2) − 0. 04

(3, 2) ↑ (3, 3) − 1

Two episodes are not nearly enough to build an accurate
model of an environment but we can start building by𝑇



counting the outcomes of each state and action and𝑠' 𝑠 𝑎
normalizing to get an estimate of . For example, out𝑇(𝑠, 𝑎, 𝑠')
of the times we were in state and executed the3 (3, 3)
policy-given action of , only once did we land in the state of→

. So we can estimate this transition’s probability as(4, 3)
. We can continue in a similar fashion𝑇((3, 3), →, (4, 3)) = 1

3
to get the probability estimates of all of the state-action
transitions. Now that we have constructed a learned model, we
can use it to evaluate our policy. This is simple, as we just use
the policy evaluation equation . What we just did is𝑉π(𝑠)
passive model-based learning: we learned a model of the
environment by following a fixed policy and using our model
to evaluate our policy.
An interesting observation here is that we can use our

learned model of and to compute the greedy optimal𝑇 𝑅
policy using the Bellman equations! However, we run into a
problem. Notice how if the real transition function is how it𝑇
is according to the dynamics shown in Figure 2, and we follow
the policy shown in Figure 4, reaching the states and(3, 1)

would be impossible. As a result, the agent may never(4, 1)
know that the states and exist. If our goal was to(3, 1) (4, 1)
construct an accurate model of the environment and use it to
improve our current policy, not having visited all of the state
space might be to our detriment because there could be states
that yield higher rewards.
This leads us nicely to active model-based learning. Instead

of starting with a fixed policy, we start by doing random
actions in every state and using the traces we get from this
exploration to construct the and functions. We can then𝑇 𝑅
use this information to compute and follow the greedy policy
with respect to . One problem with this approach is that𝑉*

while random exploration is guaranteed to get us to 𝑉*

asymptotically, it’s too slow in a lot of cases. How can we
resolve this issue?
One idea is to select a value between and , which willε 0 1

be the probability with which we execute a random action so
that we can explore the environment and possibly discover
unseen states. With probability, we follow the greedy1 − ε
policy obtained from the learned , and computed . How𝑇 𝑅 𝑉*

do we select a good value for ? This is the criticalε
exploration/exploitation dilemma, an important concept in
RL and has a lot of interesting connections to what intelligent
beings do in their lives: if you explore too little and not take
too much risk, you might not discover better states (e.g., better
food, prey, land, weather, mates) and thus follow a suboptimal
policy whereas if you explore too much, you will learn too
slowly which makes the learning process inefficient. Too
much exploration also has little utility once the optimal policy
is learned. In many RL algorithms, is often annealed, orε
gradually decreased over time. This helps the agent explore
thoroughly in the early stages but focus on maximizing
rewards in the later stages. This strategy of selecting actions is
termed the ε-greedy strategy.

Algorithm 3 Active Model-Based Learning.
Initialize empty , , , Initialize to random policy𝑇 𝑅 𝑉* π
Get initial state 𝑠
while until converges:𝑉*

Sample action using -greedy strategy and execute𝑎 ε
Observe new state 𝑠'
Update ,𝑇(𝑠, 𝑎, 𝑠') 𝑅(𝑠, 𝑎, 𝑠')
if is terminal:𝑠'

𝑉*(𝑠) = 𝑅(𝑠, 𝑎, 𝑠')
Sample new initial state 𝑠'

else:

Update 𝑉*(𝑠) =
δ

max
θ ϵ 𝑆
∑ 𝑇(𝑠, δ, θ)[𝑅(𝑠, δ, θ) + γ𝑉*(θ)]

Update π(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑠' ϵ 𝑆
∑ 𝑇(𝑠, 𝑎, 𝑠')𝑉*(𝑠')

𝑠 = 𝑠'
endwhile

IV. MODEL-FREE RL
Model-free learning involves directly interacting with the

environment through trial and error. Consider the following
task: to compute the average of a set of numbers. However, the
set is not given to us all at once but rather as a stream. Every
time a new number or sample comes in, we are to compute a
running average. How would one do this? The formula to
compute the mean of a set of numbers in such an online
fashion is as follows:

𝑋
^

𝑛+1
= 𝑋

^

𝑛
+ 1

𝑛+1 (𝑥
𝑛+1

− 𝑋
^

𝑛
)

where:
● is the new mean we are to compute𝑋

^

𝑛+1

● is the old mean estimate of the past samples𝑋
𝑛

^
𝑛

● is the new sample𝑥
𝑛+1

Essentially, whenever we are given a new sample , the𝑥
𝑛+1

new mean is the old estimate plus the weighted difference of
the new sample and the old estimate. This is the core idea
behind how model-free methods work. For a lot of problems,
it is not possible to give an agent the entire transition function
for every possible state or even specify a good-enough𝑇 𝑠

model. This is oftentimes due to the extremely large and
complex state-space of the problem. Think back to when you
learned how to ride a bicycle: did you maintain a mental
model of a bicycle’s state-transition dynamics to get a priori
knowledge of how much torque to exert on one handle versus
the other, how much force to use on each of the pedals, or how
much your upper and lower body muscles had to contract to
balance correctly? No, that would be silly. Rather, you learned
by directly interacting with the bicycle and your muscle
memory figured out which actions are the best to take in any
given situation. You now reflexively take the correct actions in
any given state because you learned that those actions have the



best value through experience. These are the kinds of
problems where model-free approaches work well, where the
agent needs to directly take actions in the complex
environment and through its learned experiences updates its
understanding of the values of its actions in an online fashion.
In fact, this is the very definition of temporal-difference

(TD) learning. “If one had to identify one idea as central and
novel to reinforcement learning, it would undoubtedly be
temporal-difference (TD) learning”, said Richard Sutton and
Andrew Barto, widely regarded as the founders of RL, in their
book Reinforcement Learning: An Introduction, a
comprehensive introduction to RL covering much of the
field’s development since the 1980s.
TD methods allow the agent to learn directly from raw

experience without having to maintain a model of the
environment’s dynamics. This means that we can directly
learn the values of each state without maintaining or .𝑇 𝑅
Whenever we act in the environment by executing an action 𝑎
and observe the new state as well as the experienced reward𝑠'

, we obtain a new .𝑅(𝑠, 𝑎, 𝑠') 𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑅(𝑠, 𝑎, 𝑠') + γ𝑉π(𝑠')
Using this, we make a TD-Update using the equation:

𝑉π(𝑠) = 𝑉π(𝑠) + α[𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉π(𝑠)]
where:

● is called the learning rate, which is theα ϵ [0, 1]
weight we want to give to the difference of the new
sample and old estimate

Notice how this equation bears a striking resemblance to the
original online mean estimation equation. This is no
coincidence. Every time we obtain a new sample, we make a
new value estimation by adding to the old estimate the
weighted difference of the new sample and old estimate. In
TD-learning, the learning rate starts with a value closer toα 1
and is annealed over time to ensure convergence, prevent too
much fluctuations, and reduce sensitivity to noise especially in
the later stages of training. We are still doing passive RL, as
we only are evaluating a fixed policy here, but in a model-free
manner. How can we make this active? How can we learn an
optimal policy in a model-free manner?
The ideas of exploration/exploitation come back into play.

We can use the -greedy strategy to execute random actionsε
and explore the state space. However, we run into a problem
when selecting an optimal strategy based on the learned
experience from exploration. The policy at any given state is𝑠

given by . We cannot make this𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑠' ϵ 𝑆
∑ 𝑇(𝑠, 𝑎, 𝑠')𝑉*(𝑠')

calculation as we are not maintaining , so we cannot get the𝑇
value . Basically, we have an issue where we are𝑇(𝑠, 𝑎, 𝑠')
trying to learn in a model-free way, but we need the model.
How do we resolve this situation?
In active model-free RL, we are trying to transition away

from thinking about values of states and towards thinking
about values of actions. If we can somehow get a version of
the value equation that allows us to obtain the values of
actions, we can learn an action-value function using the ideas
of TD-learning and use that learned function to easily obtain

the policy at any given state: the action of highest
action-value.
Notice this term in the original value iteration equation:

𝑠' ϵ 𝑆
∑ 𝑇(𝑠, 𝑎, 𝑠')[𝑅(𝑠, 𝑎, 𝑠') + γ𝑉(𝑠')]

This is essentially the expected cumulative reward of
executing a certain action at a given state . The value𝑎 𝑠
iteration equation is the maximization of this term over all
actions . If we define this term as a function , the𝑎 ϵ 𝐴 𝑄(𝑠, 𝑎)
value iteration equation can be rewritten as:

𝑉(𝑠) =
𝑎

max 𝑄(𝑠, 𝑎)

Since we have now redefined , we can use it to replace𝑉(𝑠)
in the original term:𝑉(𝑠')

𝑠' ϵ 𝑆
∑ 𝑇(𝑠, 𝑎, 𝑠')[𝑅(𝑠, 𝑎, 𝑠') + γ

𝑎'
max 𝑄(𝑠', 𝑎')]

This essentially redefines as well:𝑄(𝑠, 𝑎)

𝑄(𝑠, 𝑎) =
𝑠' ϵ 𝑆
∑ 𝑇(𝑠, 𝑎, 𝑠')[𝑅(𝑠, 𝑎, 𝑠') + γ

𝑎'
max 𝑄(𝑠', 𝑎')]

Now, the policy at any state becomes:𝑠
π(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑎
𝑄(𝑠, 𝑎)

The crutch of needing the model to get -values still𝑇 𝑄
exists. However, the formulation allows us to estimate𝑄(𝑠, 𝑎)
-values directly using the ideas found in temporal-difference𝑄

learning. Whenever we execute an action at any state and𝑎 𝑠
experience a reward , we can make a update using𝑅(𝑠, 𝑎, 𝑠') 𝑄
the equation:

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + α[𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄(𝑠, 𝑎)]
where:

● 𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑅(𝑠, 𝑎, 𝑠') + γ
𝑎'

max 𝑄(𝑠', 𝑎')

Algorithm 4 Q-Learning.

Initialize with for all𝑄
0
(𝑠, 𝑎) = 0 𝑠, 𝑎

Get initial state 𝑠
while until converges:𝑄

Sample action using -greedy strategy and execute𝑎 ε
Observe new state and𝑠' 𝑅(𝑠, 𝑎, 𝑠')
if is terminal:𝑠'

𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑅(𝑠, 𝑎, 𝑠')
Sample new initial state 𝑠'

else:
𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑅(𝑠, 𝑎, 𝑠') + γ

𝑎'
max 𝑄(𝑠', 𝑎')

Update 𝑄
𝑡+1

(𝑠, 𝑎) = 𝑄
𝑡
(𝑠, 𝑎) + α[𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄

𝑡
(𝑠, 𝑎)]

𝑠 = 𝑠'
endwhile

This is Q-Learning, of the most well-known RL
algorithms. What makes this algorithm incredible is its
off-policy nature, meaning that it always converges to an
optimal policy even if the agent acts suboptimally. Some
caveats are that you still have to explore enough and anneal α



enough over time but not decrease it too quickly. Specifically,
must be annealed over time such that two properties hold:α 𝑡

𝑡=0

∞

∑ α
𝑡

= ∞
𝑡=0

∞

∑ α
𝑡
2 < ∞

These two relations are basically saying that the learning
rate should be large enough initially to allow the agent to learn
well from the high amount of exploration at the beginning, and
that it must decrease quickly enough for convergence.

VI. DEEP REINFORCEMENT LEARNING

Perhaps one of the most incredible breakthroughs in RL and
AI in general is deep reinforcement learning. In fact, RL
research experienced a bit of a “lull” up until the early 2010s
primarily due to the significant limitation of not having
enough compute resources to deal with the complex
state-spaces of many problems, until deep RL came along and
revived the field by introducing new techniques for dealing
with such large state-spaces.
So what is deep RL? Essentially, it’s the integration of deep

neural networks with RL, which enables us to handle
high-dimensional data such as images and sounds. Up until
now, we’ve done RL using atomic states–states that are
treated as unique, indivisible units–and stored the entire
transition function or -values for every state in𝑇 𝑄 𝑠 ϵ 𝑆
memory. This is not feasible for a lot of problems. For
instance, in a board game like Go, if we treat every possible
board arrangement as a single state, the state-space would be
larger than the number of particles in the universe. This gets
worse when RL is applied to play video games like Atari. We
can resolve this issue by adopting a feature-based
representation of states, where each state is described in terms
of its features or attributes. Instead of storing the functions ,π
, or explicitly as a table in memory, we can use𝑉 𝑄

supervised-learning methods to train a neural network that
takes as input the features of a state and returns a value. The
challenge now shifts to achieving generalization: if our agent
only visits a miniscule subset of the vast state-space, how can
it generalize that experience so that it knows what to do for all
states in the state-space?
DeepMind’s development of Deep Q-Networks (DQN) is

one of the first significant breakthroughs in deep RL. The
algorithm approximates -values by training a neural network𝑄

where represents the parameters of the network𝑄(𝑠, 𝑎, θ) θ
that approximates the , and contains all the weights and𝑄(𝑠, 𝑎)
biases of each of the layers. All the parameters in areθ
randomly initialized. Using this initial -network, we first act𝑄
in the environment using an -greedy strategy, collect theε
samples of our experiences , and store them in an(𝑠, 𝑎, 𝑟, 𝑠')
experience replay buffer. We then sample a random
minibatch of transitions from this buffer and use(𝑠, 𝑎, 𝑟, 𝑠')
classic supervised learning methods such as stochastic
gradient descent and backpropagation to train the network
according to the loss function:

𝐿(θ) = 𝔼
(𝑠,𝑎,𝑟,𝑠')∼𝐵𝑢𝑓𝑓𝑒𝑟​

[(𝑟 + γ
𝑎'

max 𝑄(𝑠', 𝑎'; θ−) − 𝑄(𝑠, 𝑎; θ))2
]

During the training process, two networks are maintained:
the target network and main policy network that we are
training. Everytime we calculate the error , we are𝐿(θ)
actually calculating the expectation of the square of the error
between the target network’s output which uses weights θ−

and the main network’s output which uses weights . Weθ
periodically update the target network to just be our main
network during the training process. This strategy of updating
the target network less frequently than the main network
reduces oscillations in the learning updates. To play the game
Atari, DeepMind researchers fed as input to the -network the𝑄
frames of the game, which are images210 × 160
downsampled and resized to images and used a84 × 84
convolution neural network (CNN) architecture to learn spatial
features from the image without having to use hand-crafted
features. -Networks that use CNNs and trained with this𝑄
approach are referred to as Deep -Networks (Mnih et. al,𝑄
2015). It worked incredibly well, showing better than
human-level performance in the game. For instance, the
network learned that one optimal strategy in Atari is to break a
hole on one side of the blocks-barrier and let the ball bounce
inside between the ceiling and blocks-barrier so that it can hit
many blocks and collect as many points as possible.

Figure 5: DQN playing Atari

After the success of DQN, DeepMind developed AlphaGo,
which achieved superhuman performance in the game of Go
and defeated world champion Lee Sedol. AlphaGo used a
combination of model-based and model-free approaches.
Namely, it uses a policy network to select moves and a value
network to evaluate board positions and combines this with an
algorithm called Monte Carlo Tree Search (MCTS) which
essentially allows AlphaGo to plan for possible futures and
select the best strategy (Silver et. al, 2016). Training the policy
and value networks involved both supervised learning–using
data from real games–and reinforcement learning through
self-play.
AlphaGo relies heavily on knowledge of the game’s rules

and objectives. DeepMind researchers wanted to make an
algorithm that can learn any environment or game on its own
where the only knowledge given to the agent is all legal
actions at the current state and if the game is over (someone
won or it’s a draw) but not the overall rules of the game. This
was the challenge given to MuZero, which is an algorithm that
combines the strengths of model-free and model-based RL by
learning the environment’s dynamics from scratch
(Schrittwieser et. al, 2019). MuZero not only maintains a



policy network and value network, but it also maintains a
dynamics model that predicts state transitions and rewards,
even without knowing the exact rules of the environment.
MuZero, just like AlphaGo, also simulates future states and
plans using MCTS but it also predicts what these states
actually look like according to the rules of the game it is
playing. MuZero has successfully learned how to play several
games including Go, Chess, and Shogi all without any prior
knowledge of what game it is actually playing! This represents
a significant step in RL, as it paves the way for applications in
unknown or partially known environments.

VII. THE FUTURE
While RL has made significant strides, exciting recent

developments in ML such as transformer-based NN
architectures and the new era of large language models
(LLMs) have captured much of the attention in today’s AI
research. Nevertheless, RL remains central to progress in
fields that need adaptive, autonomous decision-making in
uncertain situations. It continues to be refined for real-world
applications across robotics, healthcare, and so on. RL is
actually being used in LLMs as well, with algorithms like
Proximal Policy Optimization (PPO) being used to fine tune
the models. RL is also the central technique behind OpenAI’s
large reasoning model, o1, which was “trained with large-scale
reinforcement learning to reason using chain-of-thought”
(OpenAI, 2024).
Today, achieving generalization quickly is still seen as the

biggest challenge in RL. It is especially important in
non-ergodic problems: “How do you make sure that an agent
gets enough experience to learn a high-performing policy, all
the while not harming its environment, other agents, or itself?”
(Sutton & Barto, 2018) In such scenarios, it’s necessary to
give the agent a well-defined reward function as well as come
up with an effective exploration/exploitation strategy.
Researchers have increasingly turned to supervised and
unsupervised learning methods to solve problems that need
generalization as they seem to capture the underlying
distributions in the training data better than RL algorithms.
Continued research in generalization methods will likely
unlock RL’s potential for broader applications and allow the
field to move beyond specialized tasks like playing video
games.
There is still a lot of work to be done in this subfield of ML.

Its future lies in making agents more efficient, safe, adaptive,
and able to generalize. Once strong generalization methods are
achieved, RL will likely mature greatly, blend with other AI
fields, expand into new domains, and play an incredibly
pivotal role in AI’s broader advancements.
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